

E 12:2

The following tables contain information on measured current consumption as well as calculated heat dissipation during what we see as the most extreme sustained normal operation (1/8 rated power).

Level	Load	Rated power		Line Current *2)		Watt *1)			Thermal Dissipation	
				120 VAC	230 VAC	In	Out	Dissipated	BTU/hr	kCal/hr
				Amp (I)						
Standby				0.032	0.70	0.0	0.7	2.4	0.6	
			0.019		0.31	0.0	0.3	1.1	0.3	
Power on, Idling					0.183	20.7	0.0	20.7	70.5	17.8
			0.315		21.9	0.0	21.9	74.7	18.8	
				Amp (I)		Watt				
Pink Pseudo Noise (1/8)	70 V / Ch.	600	x 2		1.8	210	150	60	205	52
	70 V / Ch.	600	x 2	2.9		223	150	73	248	62
	16 Ω / Ch.	33	x 2		1.1	128	83	45	154	39
	16 Ω / Ch.	33	x 2	1.8		136	83	54	183	46
	8 Ω / Ch.	600	x 2		1.8	209	150	59	202	51
	8 Ω / Ch.	600	x 2	2.9		219	150	69	237	60
	4 Ω / Ch.	600	x 2		1.9	222	150	72	245	62
	4 Ω / Ch.	600	x 2	2.9		226	150	76	259	65
	2 Ω / Ch.	600	x 2		2.0	249	150	99	337	85
	2 Ω / Ch.	600	x 2	3.1		252	150	102	349	88

^{*1)} The amplifier's PSU operates as a non-resistive load, so the calculation "Volts x Amps = Watts" would not be correct. Instead, measured and specified here is what is known as the "Active Power" in the amplifier providing useful, real-world values of power consumption and heat dissipation.

^{*2)} Current draw figures measured at 230 V. as well as 120 V. The efficiency is similar, but not identical for the two scenarios. The efficiency for 100 V mains is very similar to that of 120 V.